
38 The Delphi Magazine Issue 34

Beating the System: Add Extra
Richness To RichEdit Controls!
by Dave Jewell

Isn’t it funny how one thing
always leads to another? No, the

wife hasn’t got me decorating
again, I’m talking about how this
month’s column evolved.

My original intention was to put
together a grab-bag of assorted
Delphi programming hints and
tips. However, part way through
this I discovered something rather
interesting that related to the rich
text edit control. I couldn’t resist
pursuing this further and one thing
just led to another...

Introducing
RichEdit Version 2.0
If you’ve done much Delphi pro-
gramming, you’ll probably have
come across the rich edit (TRichE-
dit) control. This component lives
on the Win32 page of the compo-
nent palette in Delphi 3 and it is
effectively a VCL wrapper around
the underlying Windows rich text
control. Using this control, you can
create your own mini word-
processor, with different parts of
the text being shown with different
fonts, different attributes (bold,
italic, etc), different colours and so
forth. It isn’t limited to 64Kb of text
and, overall, the capabilities of the
rich text control are quite exten-
sive. It’s used as the basis for the
WordPad application which ships
with Windows 95.

However, having said all this, the
fact is that Delphi programmers
are being short changed in terms of
what we get with Delphi 3. Let me
explain. When Microsoft intro-
duced NT 4.0, they brought out a
new enhanced implementation of
the rich edit control, called version
2.0. Even though Delphi 3 came out
some considerable time after rich
edit 2.0, support for the new rich
edit code was never incorporated
into TRichEdit. Perhaps one of the
reasons for this is the uncertainty
over whether or not it’s installed

on a particular machine. Like I said,
version 2.0 of the control ships
with NT 4.0 and will also be
included with NT 5.0. It was never
officially included with Windows
95, but will undoubtedly form a
part of the Windows 98 shrink-
wrap. The rich edit 2.0 code might
be present on a Windows 95
system if some application that
uses it has already been installed.

From this, you can see that we
can’t make any assumptions about
whether or not rich edit 2.0 sup-
port is present. If you develop a
Delphi application which makes
use of the component described in
this month’s column, or is other-
wise dependent on rich edit 2.0
functionality, then you must
include the necessary redistribut-
able Microsoft DLL along with your
program.

Specifically what files am I talk-
ing about? If you look in your
\WINDOWS\SYSTEM directory, you
should find a file called RICHED.DLL.
This is the old 16-bit implementa-
tion of rich edit, for our purposes it
can be ignored. You should also
see a file called RICHED32.DLL. This
is the 32-bit version 1.0 implemen-
tation and it should be present on
all 32-bit platforms. If you’ve got
rich edit 2.0 installed on your
system you will also find a file
called RICHED20.DLL. This is the
new, 32-bit 2.0 code and it’s this file
(305Kb under Windows 98 beta 3)
that you will need to distribute
when shipping an application that
requires rich edit 2.0 functionality.

See the notes at the end about
distribution issues.

What’s New In Version 2.0?
So what exactly does rich edit 2.0
bring to the party? What am I
making all the fuss about? Rich edit
2.0 includes a number of interest-
ing new features such as a multi-
level undo/redo buffer, full support

for Unicode and Far Eastern lan-
guages and a number of assorted
user interface improvements.

For example, if you use Office 97,
you’ve probably noticed that, in
Word 97, you can type a URL into a
document and Word will automati-
cally recognise it as such. Word
turns it into a hyperlink, displaying
it underlined in blue. When you
click on the hyperlink, Internet
Explorer is automatically invoked
with the target URL. Similar things
happen in other Microsoft applica-
tions such as Outlook Express. As
far as I know, Word 97 isn’t actually
based on the rich edit control, but
rich edit 2.0 does offer very similar
functionality in terms of automatic
URL detection and highlighting.
This is obviously a nice feature to
build into your own applications,
particularly with today’s heavy
emphasis on internet interoper-
ability.

So how do we get a rich edit 2.0
control into a Delphi application?
This is where the fun starts! My
hope was that Borland’s VCL wrap-
per code would automatically
detect the presence of the version
2.0 DLL and use it if present. This
turns out not to be the case. My
next approach was to try renaming
the RICHED20.DLL file to
RICHED32.DLL, thus forcing the VCL
library to use the newer control.
Again, this didn’t work and it
wasn’t a terribly good idea anyway,
since it might cause side effects
with other software. In an attempt
to get to the bottom of the prob-
lem, I examined the source code
for Delphi’s TRichEdit control and
I also disassembled the new
RICHED20.DLL [we didn’t hear you say
that, Dave... Ed]. Lastly, I checked
through the MSDN programming
information relating to the version
2.0 control which, after something
over two years in the field, is still
marked as ‘preliminary’.

June 1998 The Delphi Magazine 39

Microsoft Strikes
Again... Groan....
It wasn’t difficult to see what the
problem was. Aside from the
change to the name of the DLL,
which I’ve already mentioned,
Microsoft have also changed the
underlying API-level window class
name that’s associated with the
rich edit control.

You’ll probably appreciate that
VCL push button controls, for
example, map down onto a
Windows BUTTON control, Delphi
listboxes map down onto a LISTBOX
control, and so on. The Delphi
implementation of TRichEdit maps
down onto a control called RICHE-
DIT. However, with the release of
rich edit version 2.0, Microsoft
changed the underlying class name
to RICHEDIT20A. Well thank you,
Microsoft...

If you’re getting fed up of me
having a dig at Microsoft on a

monthly basis, please be assured
that I’m even more irritated by it
than you are. You might be for-
given for thinking that I deliber-
ately set out to find some nook or
cranny of Windows where Micro-
soft have committed some
almighty gaff. Please be assured
that this isn’t the case. It’s just that,
no matter where I turn, I invariably
seem to end up putting my foot in
something that I really wish hadn’t
ended up on the sole of my shoe!

So what’s my grouch this time?
Simply that the new version 2.0
control should have been imple-
mented as a super set of the exist-
ing control. Rather than
introducing a new DLL and a new
class name, the new version 2.0
functionality should have been
seamlessly rolled into the existing
RICHED32.DLL library and RICHEDIT
class name. Any new functionality
should have been implemented
purely through new EM_XXXX edit
messages, new notification

messages and new style bits when
the window is created. By doing
things in this way, older client
applications would have been able
to use the new control without any
coding changes while newer client
software could have used a special
message as a version number
check to determine what flavour of
the control they were dealing with.
Sometimes, I really do wonder
what passes for grey matter in
Redmond...

Anyway, for better or worse,
we’re saddled with the current
state of play. If you open the VCL
source file COMCTRLS.PAS, and
search for the TCustomRichEdit.
CreateParams routine, you’ll appre-
ciate the problem. Firstly, Delphi’s
code tries to load the RICHED32
library. The assumption is that, by
loading the library into memory, it
will, in turn, register the RICHEDIT
control class. Next, the CreateSub-
Class routine is called, which
causes the TCustomRichEdit control

unit RichEdit2;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ComCtrls, RichEdit;

type
TRichEdit2 = class (TCustomRichEdit)
private
fLibHandle: THandle;
procedure WMNCDestroy (var Message: TWMNCDestroy);
message wm_NCDestroy;

protected
procedure CreateParams (var Params: TCreateParams);
override;

public
published
property Align;
property Alignment;
property BorderStyle;
property Color;
property Ctl3D;
property DragCursor;
property DragMode;
property Enabled;
property Font;
property HideSelection;
property HideScrollBars;
property ImeMode;
property ImeName;
property Lines;
property MaxLength;
property ParentColor;
property ParentCtl3D;
property ParentFont;
property ParentShowHint;
property PlainText;
property PopupMenu;
property ReadOnly;
property ScrollBars;
property ShowHint;
property TabOrder;
property TabStop default True;
property Visible;
property WantTabs;
property WantReturns;
property WordWrap;
property OnChange;
property OnDragDrop;
property OnDragOver;
property OnEndDrag;
property OnEnter;
property OnExit;
property OnKeyDown;
property OnKeyPress;
property OnKeyUp;

property OnMouseDown;
property OnMouseMove;
property OnMouseUp;
property OnResizeRequest;
property OnSelectionChange;
property OnStartDrag;
property OnProtectChange;
property OnSaveClipboard;

end;
procedure Register;
implementation
{$R *.DCR}
procedure TRichEdit2.CreateParams(
var Params: TCreateParams);

const
HideScrollBars: array[Boolean] of Longint =
(ES_DISABLENOSCROLL, 0);

HideSelections: array[Boolean] of Longint =
(ES_NOHIDESEL, 0);

var
OldError: Longint;

begin
OldError := SetErrorMode (sem_NoOpenFileErrorBox);
fLibHandle := LoadLibrary ('RICHED20.DLL');
SetErrorMode (OldError);
if (fLibHandle > 0) and
(fLibHandle < hInstance_Error) then
fLibHandle := 0;

inherited CreateParams (Params);
if fLibHandle <> 0 then
CreateSubClass (Params, 'RICHEDIT20A')

else
CreateSubClass (Params, 'RICHEDIT');

with Params do begin
Style := Style or
HideScrollBars[Inherited HideScrollBars] or
HideSelections[HideSelection];

WindowClass.style :=
WindowClass.style and not (cs_HRedraw or cs_VRedraw);

end;
end;
procedure TRichEdit2.WMNCDestroy(var Message: TWMNCDestroy);
begin
Inherited;
if fLibHandle <> 0 then
FreeLibrary (fLibHandle);

end;
procedure Register;
begin
RegisterComponents('XFactor', [TRichEdit2]);

end;
end.

➤ Listing 1

40 The Delphi Magazine Issue 34

to be based on the underlying (and
now registered) RICHEDIT class.

If we were to force the CreatePar-
ams code to use the RICHED20
library, it wouldn’t make a blind bit
of difference because the Create-
SubClass routine would still search
for an API-level class called RICHE-
DIT20A and use this as a basis for
the new control. It’s for this reason
that simply renaming the name of
the DLL won’t work.

Delphi To The Rescue...
In this sort of situation, the Delphi
approach is to derive a new control
and modify the descendant’s
behaviour as required. That’s
exactly what I’ve done in Listing 1.
Here, you can see that I’ve derived
a new control, TRichEdit2, from the
existing TCustomRichEdit control.
The new class overrides two
methods of its parent class, Cre-
ateParams and WMNCDestroy. The
CreateParams code attempts to load
the newer, RICHED20 library and
stores the library handle in fLib-
Handle, a private variable which
shouldn’t be confused with the
variable of the same name in the
parent class. If it successfully
loaded the library, then it calls Cre-
ateSubClass with a class name of
RICHEDIT20A, causing the new

control to subclass the new ver-
sion 2.0 rich edit control. If the
library wasn’t loaded for any
reason, then it defaults to using the
RICHEDIT class name.

It’s worth pointing out that
because the Inherited CreatePar-
ams handler is called, the RICHED32
library will be loaded into memory
even if we only make use of the new
RICHED20 library. In practice, this
isn’t likely to cause any sort of
problem. The only reason that
both CreateParams handlers call
LoadLibrary is to guarantee that the
target class name is registered
before the call to CreateSubClass.

Introducing URL Automation!
OK, so we’ve got a shiny new ver-
sion of the rich edit control. What
can we do with it? As I mentioned
earlier, one of the cute capabilities
of rich edit 2.0 is the ability to auto-
matically recognise URL hyper-
links in text. According to the
(still!) preliminary documentation,
all the URL formats shown in
Listing 2 are auto detected.

As you can see, this isn’t quite as
nice as the URL recognition that’s
built into Word 97. With Word, you
can type something like
mailto:Humpty@Dumpty.com and it
will be converted into a clickable

link. You can likewise type some-
thing like www.wombat.com and the
initial http:// part of the URL will
be assumed. Neither of these
examples would be recognised by
the auto URL detection built into
rich edit 2.0. You’re undoubtedly
hoping that the back-room boys at
Microsoft have provided a facility
for defining your own auto URL rec-
ognition templates? That would be
nice, but no such luck. Maybe in
version 3.0.

But all is not lost: if you insist on
total flexibility and being able to
define your own URL formats,
there’s nothing to stop you from
doing that. It simply means that
you won’t be able to use the auto-
matic recognition capabilities in
the control. Instead, every time the
text in the control changes, you’ll
need to check for any of your
wanted URL character templates
and then set the new CFE_LINK text
effect for the text in question. This
will tell the control to format the
designated text as a hyperlink.

For now, let’s just assume that
we’re using the built-in URL recog-
nition code. To enable it (it’s off by
default), we need to send a special
em_AutoURLDetect message to the
control, like this:

RichEdit1.Perform(
em_AutoURLDetect, 1, 0);

Once done, you’ll find that entering
a URL which matches the above
format will cause the text to be dis-
played in blue and underlined, just
as in Word. However, moving the
mouse cursor over the text is
ignored and, when the highlighted
text is clicked, nothing special hap-
pens. In order to fully exploit the
new URL capabilities of the rich

http:<text with no whitespace>
file:<text with no whitespace>
mailto:<text with no whitespace>
ftp:<text with no whitespace>
https:<text with no whitespace>
gopher:<text with no whitespace>
nntp:<text with no whitespace>
prospero:<text with no whitespace>
telnet:<text with no whitespace>
news:<text with no whitespace>
wais:<text with no whitespace>

➤ Listing 2

➤ Figure 1: As you will probably know, Word 97 (and other Office
applications) can automatically detect URL references and convert
them into hyperlinks. In this month's column, Dave shows you how
to achieve the same effect using Version 2.0 of Microsoft's rich text
edit control

June 1998 The Delphi Magazine 41

edit 2.0 control, we have to enable
link notification messages. That’s
done like this:

mask := RichEdit1.Perform(
em_GetEventMask, 0, 0);

mask := mask or enm_Link;
RichEdit1.Perform(
em_SetEventMask, 0, mask);

Here, mask is a scratch variable
that’s used to get the current event
mask bits, add in the enm_Link flag
and then set this as the new event
mask. Once link notifications are
enabled, the control will start
sending wm_Notify messages to the
parent window (in our case, the
Delphi form) any time that the
mouse moves over a hyperlink text
area, is clicked on a hyperlink text
area, or whatever. To receive those
wm_Notify messages, we need to
add a message handler to the class
declaration:

procedure WMNotify(
var Message: TWMNotify);
message wm_Notify;

You’ll also notice that once link
notifications are enabled, the rich
edit 2.0 control automatically dis-
plays a ‘hand’ cursor as the mouse
moves over a hyperlink. I expected
to have to implement the cursor-
changing code myself but the con-
trol will take care of it for you.

Wow, maybe there is intelligent life
in Redmond after all!

The code fragment in Listing 3
shows how to make use of these
link notification messages. This
code is taken from a working pro-
gram, the complete source code to
which is included on this month’s
cover disk. Firstly, all wm_Notify
messages received by the form
arrive at the WMNotify method. In a
complex program, you’ll typically
have several different types of noti-
fication arriving from different con-
trols. You may even have more
than one rich edit control on a
single form. Consequently, the first
thing the routine does is check that
the notification messages are
coming from the required control.
It then branches according to the
actual type of notification that’s
received. In this case, we’re inter-
ested in en_Link notifications.
Every time one of these comes in,
we call URLLinkNotification.

Unfortunately, even Inprise
[Doesn’t trip off the tongue like
‘Borland’ does it? Ed] screw up
once in a while and here we have an
example. The RICHEDIT.PAS file that
comes with Delphi 3 includes all
the constants, messages and data
structures that apply to rich edit
2.0, even though Inprise haven’t
yet implemented support for ver-
sion 2.0. If you compare the Micro-
soft documentation with Inprise’s
definition of TTextRange, you’ll see
that the second field in the data

structure, lpstrText, is defined as
type AnsiChar when it should actu-
ally be a pointer to an AnsiChar. I
don’t like fixing the Inprise VCL
sources in case they make the
same mistake in Delphi 4, which
would effectively unfix my fix! In
such cases, the simplest approach
is to copy the wanted structure
definition into the code that needs
it, and implement the fix there.
That’s what I’ve done.

Inside the URLLinkNotification
code, the received message
includes a data structure that gives
us the beginning and ending char-
acter position of the text which
constitutes the hypertext link. By
subtracting one from t’other, we
know the character length of the
link information, and this is used to
initialise the length of a string.
Next, the character position infor-
mation and a pointer to the start of
the string is copied into the Tex-
tRange variable and a em_GetTex-
tRange message is issued to
retrieve just the specified amount
of text from the rich edit control.

At this point, the sz string con-
tains the text of the hypertext link.
As you’ll see from the code, the ‘pa-
rent message’ is included as part of
the notification so that we know
whether the mouse was clicked,
double-clicked, just moved over
the link or whatever. If you’ve got a
status bar in your application, a
nice touch is to display the text of
the link in the status bar as the
mouse moves over it. This pro-
vides visual feedback to the user,
indicating what’s going to happen
if the link is clicked. To do this job
properly, you’d also need to imple-
ment code to clear the status bar
information when the mouse isn’t
over a hypertext link. This is left as
an exercise to the reader, but you
can email me if you want some
ideas!

In this particular case, left-
clicking on a link causes the Shel-
lExecute routine to be called with
the link text as an argument. Thus,
if you click on a mailto link, your
email program (on my system, Out-
Look Express) will be launched;
click on a http link and Internet
Explorer will start, click on a Telnet
link to start the Telnet client and so

procedure TForm1.WMNotify (var Message: TWMNotify);
begin
if Message.NMHdr^.hwndFrom = RichEdit1.Handle then case Message.NMHdr^.code of
en_Link : URLLinkNotification (Message.NMHdr);
// Add other notification types here....

end;
end;
procedure TForm1.URLLinkNotification (Link: Pointer);
type
// Need to redefine this - RICHTEXT.PAS gets it wrong!
TTextRange = record
chrg: TCharRange;
lpstrText: PAnsiChar;

end;
var
sz: String;
TextRange: TTextRange;
pENLink: ^TENLink absolute Link;

begin
with pENLink^ do begin
SetLength (sz, chrg.cpMax - chrg.cpMin);
TextRange.chrg := chrg;
TextRange.lpstrText := Pointer (sz);
RichEdit1.Perform (em_GetTextRange, 0, Integer (@TextRange));
if Msg = wm_MouseMove then
RzStatusPane1.Caption := sz

else if Msg = wm_LButtonDown then
ShellExecute (Handle, 'open', PChar (sz), Nil, Nil, sw_Show);

end;
end;

➤ Listing 3

42 The Delphi Magazine Issue 34

on. If you’ve never used ShellExe-
cute before, it’s deeply cool. I have
got no complaints in this area,
Microsoft!

Time For The Caveats...
On this month’s disk I’ve included
a stripped-down program which
illustrates how to use a ‘richer’ text
control along the lines described in
this article.

Please understand that this pro-
gram is most definitely not a func-
tional word processor, it is simply
a test bed to demonstrate what I’ve
described here. Full source code is
included, but do bear in mind that
the program uses the Raize compo-
nents version 1.6 to implement the
toolbar and the status window. If
you don’t have Raize components,
you won’t be able to rebuild the
code.

You should appreciate that the
idea here isn’t for you to rebuild
my sample application, but for you
to understand how to incorporate
version 2.0 of the rich edit control
into applications of your own. If you
really must rebuild the program,
then you can always download the
shareware version of Raize Compo-
nents from Ray Konopka’s website
at www.raize.com.

➤ Figure 2: Here, you can see our own little test-bed program running.
OK, so it's not quite as fancy as Word 97, but great oaks from little
acorns do grow! As you can see, the cursor changes to a hand over a
hyperlink, and the current hyperlink text is being displayed in the
Raize status bar. Clicking the link will launch Internet Explorer

Also, I have not linked up Save,
Save As or Font dialogs: I figured
that you were all grown up boys
and girls and well able to do this
yourselves!

There’s one important issue you
should be aware of regarding the
TRichEdit2 control. If you create a
new instance of this control on a
form, it will, by default, have one
line inserted into the Lines prop-
erty which matches the compo-
nent name. In other words, if the
component name is RichEdit21,
then the text RichEdit21 will be
inserted into the control when it’s
first created. Whatever you do, do
not save the form with the control in
this state. If you do, you won’t be
able to reload the form, the IDE will
generate an exception. I haven’t
had time to investigate the prob-
lem thoroughly, but I believe that,
in some small ways, the Version 2.0
control is behaving differently to
the Version 1.0 control and this is
causing the VCL code to fail.

If you want to pursue this fur-
ther, the exception is generated in
TRichEditStrings.Insert (in the file
COMCTRLS.PAS), you’ll see that the
last line of this procedure raises an
exception, and this happens when
the form is loaded into memory.

Fortunately, the work-around is
very straightforward, just be sure
to clear the Lines property before
saving the form! In next month’s
column, I’ll continue the develop-
ment of this control by examining
how to implement a multiple
undo/redo facility, and we’ll also
encapsulate the URL hyperlink
functionality into custom proper-
ties, events and methods of the
control.

Rich Edit 2.0 Distribution
We tried to clarify the position on
whether Microsoft allow the
RICHED20.DLL file to be distributed
with third party software. The best
information we have at the
moment is that they don’t. But,
there is a better than even chance
your users will already have it.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
Dave@HexManiac.com

	Introducing RichEdit Version 2.0
	What’s New In Version 2.0?
	Microsoft Strikes Again... Groan....
	Delphi To The Rescue...
	Introducing URL Automation!
	Time For The Caveats...
	Rich Edit 2.0 Distribution

